Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.

Identifieur interne : 000246 ( Main/Exploration ); précédent : 000245; suivant : 000247

Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.

Auteurs : Geneviève Alloing [France] ; Karine Mandon [France] ; Eric Boncompagni [France] ; Françoise Montrichard [France] ; Pierre Frendo [France]

Source :

RBID : pubmed:30563061

Abstract

Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system Medicago truncatulaSinorhizobium meliloti.

DOI: 10.3390/antiox7120182
PubMed: 30563061
PubMed Central: PMC6315971


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.</title>
<author>
<name sortKey="Alloing, Genevieve" sort="Alloing, Genevieve" uniqKey="Alloing G" first="Geneviève" last="Alloing">Geneviève Alloing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. Genevieve.Alloing@unice.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mandon, Karine" sort="Mandon, Karine" uniqKey="Mandon K" first="Karine" last="Mandon">Karine Mandon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. mandon@unice.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boncompagni, Eric" sort="Boncompagni, Eric" uniqKey="Boncompagni E" first="Eric" last="Boncompagni">Eric Boncompagni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. Eric.BONCOMPAGNI@univ-cotedazur.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Montrichard, Francoise" sort="Montrichard, Francoise" uniqKey="Montrichard F" first="Françoise" last="Montrichard">Françoise Montrichard</name>
<affiliation wicri:level="4">
<nlm:affiliation>IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France. francoise.montrichard@univ-angers.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Beaucouzé</settlement>
</placeName>
<orgName type="university">Université d'Angers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Frendo, Pierre" sort="Frendo, Pierre" uniqKey="Frendo P" first="Pierre" last="Frendo">Pierre Frendo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. frendo@unice.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30563061</idno>
<idno type="pmid">30563061</idno>
<idno type="doi">10.3390/antiox7120182</idno>
<idno type="pmc">PMC6315971</idno>
<idno type="wicri:Area/Main/Corpus">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000182</idno>
<idno type="wicri:Area/Main/Curation">000182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000182</idno>
<idno type="wicri:Area/Main/Exploration">000182</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.</title>
<author>
<name sortKey="Alloing, Genevieve" sort="Alloing, Genevieve" uniqKey="Alloing G" first="Geneviève" last="Alloing">Geneviève Alloing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. Genevieve.Alloing@unice.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mandon, Karine" sort="Mandon, Karine" uniqKey="Mandon K" first="Karine" last="Mandon">Karine Mandon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. mandon@unice.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boncompagni, Eric" sort="Boncompagni, Eric" uniqKey="Boncompagni E" first="Eric" last="Boncompagni">Eric Boncompagni</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. Eric.BONCOMPAGNI@univ-cotedazur.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Montrichard, Francoise" sort="Montrichard, Francoise" uniqKey="Montrichard F" first="Françoise" last="Montrichard">Françoise Montrichard</name>
<affiliation wicri:level="4">
<nlm:affiliation>IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France. francoise.montrichard@univ-angers.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Beaucouzé</settlement>
</placeName>
<orgName type="university">Université d'Angers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Frendo, Pierre" sort="Frendo, Pierre" uniqKey="Frendo P" first="Pierre" last="Frendo">Pierre Frendo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. frendo@unice.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA</wicri:regionArea>
<wicri:noRegion>ISA</wicri:noRegion>
<wicri:noRegion>ISA</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Antioxidants (Basel, Switzerland)</title>
<idno type="ISSN">2076-3921</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system
<i>Medicago truncatula</i>
<i>Sinorhizobium meliloti</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30563061</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-3921</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
<Month>Dec</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>Antioxidants (Basel, Switzerland)</Title>
<ISOAbbreviation>Antioxidants (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E182</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/antiox7120182</ELocationID>
<Abstract>
<AbstractText>Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system
<i>Medicago truncatula</i>
<i>Sinorhizobium meliloti</i>
.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alloing</LastName>
<ForeName>Geneviève</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. Genevieve.Alloing@unice.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mandon</LastName>
<ForeName>Karine</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. mandon@unice.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boncompagni</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. Eric.BONCOMPAGNI@univ-cotedazur.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Montrichard</LastName>
<ForeName>Françoise</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France. francoise.montrichard@univ-angers.fr.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frendo</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, INRA, CNRS, ISA, France. frendo@unice.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ANR-11-LABX-0027-01</GrantID>
<Agency>Agence Nationale de la Recherche</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Antioxidants (Basel)</MedlineTA>
<NlmUniqueID>101668981</NlmUniqueID>
<ISSNLinking>2076-3921</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">legume plant</Keyword>
<Keyword MajorTopicYN="N">redox homeostasis</Keyword>
<Keyword MajorTopicYN="N">stress</Keyword>
<Keyword MajorTopicYN="N">symbiosis</Keyword>
<Keyword MajorTopicYN="N">thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30563061</ArticleId>
<ArticleId IdType="pii">antiox7120182</ArticleId>
<ArticleId IdType="doi">10.3390/antiox7120182</ArticleId>
<ArticleId IdType="pmc">PMC6315971</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1999 Sep;121(1):97-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Nov;121(3):879-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 1999 Dec;31 Suppl:S213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10694062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 2001 Feb;264(6):902-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11254138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jul;27(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11489184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1706-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 May;115(1):69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12010468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Apr;113(4):1193-1201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Apr;110(4):1187-1195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Jun;102(2):481-489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):1080-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Jun;16(6):508-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12795377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2093-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Nov;16(11):1039-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14601672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2004 May;271(4):416-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jun 1;567(1):152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15385674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(1):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15601700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jan 17;1703(2):221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Feb;55(4):1207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15686565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Mar;18(3):254-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 1;38(11):1413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jul;187(13):4562-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15968067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1881-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Feb 20;580(5):1269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16455082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Feb;83(2):354-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2006 Jul;52(7):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16917515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1968-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):1104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1851-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17724847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2008 Sep;286(2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(1):132-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(1):103-114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18826485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Jun 18;583(12):1809-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jul 16;285(29):21943-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Jun 18;397(1):22-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20470756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Dec;23(12):1643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20698752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010 Oct 18;10:265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21239621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1535-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21562331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011 May 13;11:100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(2):496-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2011;45:119-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Mar;25(3):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22007600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 18;334(6058):940</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22096190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1124-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Sep 05;2:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Sep;194(18):4983-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22773790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Mar;15(3):795-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22891731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):873-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23206179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2202-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23249379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Apr;11(4):252-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23493145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2013 Oct;45(10):882-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23883684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Nov;79(21):6737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2013;67:611-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Sep 26;4:376</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24133498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Jan;7(1):30-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24253198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Mar;77(6):817-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 May;202(3):849-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24527680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Sep;80(17):5265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Jun 30;5:326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25071739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Nov 21;289(47):32431-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25274631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Aug;1850(8):1469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25433163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 May;14(5):1301-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(10):2877-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25732535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(10):2979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25740929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2015;69:93-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26070785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Sep;27(9):2384-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15232-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26401023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26598690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Feb;29:121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2016 Aug 11;198(17):2297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27297881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Jan 23;27(2):250-256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28017611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 2017 Aug 1;68:125-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28193486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2017 Apr 1;364(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28333211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 May 26;356(6340):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28546156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Sep 12;10(9):1147-1158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28782719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2017 Dec;19(12):5130-5145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29124841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Jan 17;84(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29150514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2018 Mar 12;200(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29358497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 09;9:313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29593768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2018 Jun;97(3):233-251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29779088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jul 17;9:1026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30065740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Jul;176(13):4117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8021193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jun 20;272(25):15661-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Pays de la Loire</li>
</region>
<settlement>
<li>Beaucouzé</li>
</settlement>
<orgName>
<li>Université d'Angers</li>
</orgName>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Alloing, Genevieve" sort="Alloing, Genevieve" uniqKey="Alloing G" first="Geneviève" last="Alloing">Geneviève Alloing</name>
</noRegion>
<name sortKey="Boncompagni, Eric" sort="Boncompagni, Eric" uniqKey="Boncompagni E" first="Eric" last="Boncompagni">Eric Boncompagni</name>
<name sortKey="Frendo, Pierre" sort="Frendo, Pierre" uniqKey="Frendo P" first="Pierre" last="Frendo">Pierre Frendo</name>
<name sortKey="Mandon, Karine" sort="Mandon, Karine" uniqKey="Mandon K" first="Karine" last="Mandon">Karine Mandon</name>
<name sortKey="Montrichard, Francoise" sort="Montrichard, Francoise" uniqKey="Montrichard F" first="Françoise" last="Montrichard">Françoise Montrichard</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000246 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000246 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30563061
   |texte=   Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30563061" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020